Gujarati
Hindi
7.Gravitation
normal

Three identical bodies of equal mass $M$ each are moving along a circle of radius $R$ under the action of their mutual gravitational attraction. The speed of each body is

A

$\sqrt {\frac{{GM}}{R}} $

B

$\sqrt {\frac{{GM}}{3R}} $

C

$\sqrt {\frac{{GM}}{{\sqrt 3 R}}} $

D

$\sqrt {\frac{{GM}}{{\sqrt 2 R}}} $

Solution

Consider the circle with centre at $\mathrm{O},$ and having radius $\mathrm{R}$. In it consider three bodies of masses $\mathrm{M}$ each moving with velocity $v$ under the action of their gravitational attraction.

$\mathrm{R}=\frac{2}{3} \mathrm{AD}=\frac{2}{3} \times \mathrm{L} \sin 60^{\circ}=\frac{2 \mathrm{L}}{3} \times \frac{\sqrt{3}}{2}$

$\frac{\mathrm{L}}{\sqrt{3}} \quad$ or     $L=\sqrt 3$

Centripetal force on any one mass $\mathrm{M}$ is

$=\frac{2 \mathrm{GM}^{2}}{\mathrm{L}^{2}} \cos \left(\frac{60^{\circ}}{2}\right)$

$\frac{\mathrm{M} \mathrm{u}^{2}}{\mathrm{R}}=\frac{2 \mathrm{GM}^{2}}{\mathrm{L}^{2}} \times \frac{\sqrt{3}}{2}$

or  $\frac{\mathrm{GM}^{2}}{(\sqrt{3} \mathrm{R})^{2}} \sqrt{3}=\frac{\mathrm{M} \mathrm{v}^{2}}{\mathrm{R}}$

$\therefore v=\sqrt{\frac{\mathrm{GM}}{\sqrt{3} \mathrm{R}}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.