If the chord through the point whose eccentric angles are $\theta \,\& \,\phi $ on the ellipse,$(x^2/a^2) + (y^2/b^2) = 1$ passes through the focus, then the value of $ (1 + e)$ $\tan(\theta /2) \tan(\phi /2)$ is
$e + 1$
$e - 1$
$1 - e$
$0$
If lines $3x + 2y = 10$ and $-3x + 2y = 10$ are tangents at the extremities of latus rectum of an ellipse whose centre is origin, then the length of latus rectum of ellipse is
Length of common chord of the ellipse ${\frac{{\left( {x - 2} \right)}}{9}^2} + {\frac{{\left( {y + 2} \right)}}{4}^2} = 1$ and the circle ${x^2} + {y^2} - 4x + 2y + 4 = 0$
A ray of light through $(2,1)$ is reflected at a point $P$ on the $y$ - axis and then passes through the point $(5,3)$. If this reflected ray is the directrix of an ellipse with eccentrieity $\frac{1}{3}$ and the distance of the nearer focus from this directrix is $\frac{8}{\sqrt{53}}$, then the equation of the other directrix can be :
The equation of the tangent at the point $(1/4, 1/4)$ of the ellipse $\frac{{{x^2}}}{4} + \frac{{{y^2}}}{{12}} = 1$ is
The equation to the locus of the middle point of the portion of the tangent to the ellipse $\frac{{{x^2}}}{{16}}$$+$ $\frac{{{y^2}}}{9}$ $= 1$ included between the co-ordinate axes is the curve :