- Home
- Standard 11
- Mathematics
The locus of the middle point of the intercept of the tangents drawn from an external point to the ellipse ${x^2} + 2{y^2} = 2$ between the co-ordinates axes, is
$\frac{1}{{{x^2}}} + \frac{1}{{2{y^2}}} = 1$
$\frac{1}{{4{x^2}}} + \frac{1}{{2{y^2}}} = 1$
$\frac{1}{{2{x^2}}} + \frac{1}{{4{y^2}}} = 1$
$\frac{1}{{2{x^2}}} + \frac{1}{{{y^2}}} = 1$
Solution

(c) Let the point of contact be
$R \equiv (\sqrt 2 \cos \theta ,\,\sin \theta )$
Equation of tangent $AB$ is
$\frac{x}{{\sqrt 2 }}\cos \theta + y\sin \theta = 1$
$ \Rightarrow $ $A \equiv (\sqrt 2 \sec \theta ,\,0);\,B \equiv (0,\,{\rm{cosec }}\theta )$
Let the middle point $Q$ of $AB$ be $(h,\,k)$
$ \Rightarrow $ $h = \frac{{\sec \theta }}{{\sqrt 2 }},\,k = \frac{{{\rm{cosec }}\theta }}{2} $
$\Rightarrow \cos \theta = \frac{1}{{h\sqrt 2 }},\,\sin \theta = \frac{1}{{2k}}$
$ \Rightarrow $ $\frac{1}{{2{h^2}}} + \frac{1}{{4{k^2}}} = 1$,
Required locus is $\frac{1}{{2{x^2}}} + \frac{1}{{4{y^2}}} = 1$.
Trick : The locus of mid-points of the portion of tangents to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ intercepted between axes is
${a^2}{y^2} + {b^2}{x^2} = 4{x^2}{y^2}$
$i.e.$, $\frac{{{a^2}}}{{4{x^2}}} + \frac{{{b^2}}}{{4{y^2}}} = 1$
or $\frac{1}{{2{x^2}}} + \frac{1}{{4{y^2}}} = 1$.