7.Binomial Theorem
hard

If the constant term in the expansion of $\left(\frac{\sqrt[5]{3}}{x}+\frac{2 x}{\sqrt[3]{5}}\right)^{12}, x \neq 0$, is $\alpha \times 2^8 \times \sqrt[5]{3}$, then $25 \alpha$ is equal to :

A

$639$

B

$724$

C

$693$

D

$742$

(JEE MAIN-2024)

Solution

$ \mathrm{T}_{\mathrm{r}+1}={ }^{12} \mathrm{C}_{\mathrm{r}}\left(\frac{3^{1 / 5}}{\mathrm{x}}\right)^{12-\mathrm{r}}\left(\frac{2 \mathrm{x}}{5^{1 / 3}}\right)^{\mathrm{r}} $

$ \mathrm{T}_{\mathrm{r}+1}=\frac{{ }^{12} \mathrm{C}_{\mathrm{r}}(3)^{\frac{12-\mathrm{r}}{5}}(2)^{\mathrm{r}}(\mathrm{x})^{2 \mathrm{r}-12}}{(5)^{\mathrm{r} / 3}} $

$ \mathrm{r}=6 $

$ \mathrm{~T}_7=\frac{{ }^{12} \mathrm{C}_6(3)^{6 / 5}(2)^6}{5^2}=\left(\frac{9 \times 11 \times 7}{25}\right) 2^8 \cdot 3^{1 / 5} $

$ 25 \alpha=693$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.