Find the coefficient of $x^{6} y^{3}$ in the expansion of $(x+2 y)^{9}$
Suppose $x^{6} y^{3}$ occurs in the $(r+1)^{\text {th }}$ term of the expansion $(x+2 y)^{9}$
Now ${T_{r + 1}} = {\,^9}{C_r}{x^{9 - r}}{(2y)^r} = {\,^9}{C_r}{2^r} \cdot {x^{9 - r}} \cdot {y^r}$
Comparing the indices of $x$ as well as $y$ in $x^{6} y^{3}$ and in $T_{r+1},$ we get $r=3$
Thus, the coefficient of $x^{6} y^{3}$ is
${\,^9}{C_3}{2^3} = \frac{{9!}}{{3!6!}} \cdot {2^3} = \frac{{9.8.7}}{{3.2}} \cdot {2^3} = 672$
Find $a$ if the $17^{\text {th }}$ and $18^{\text {th }}$ terms of the expansion ${(2 + a)^{{\rm{50 }}}}$ are equal.
The coefficient of $x^{13}$ in the expansion of $(1 -x)^5(1 + x + x^2 + x^3)^4$ is :-
If the coefficient of ${(2r + 4)^{th}}$ and ${(r - 2)^{th}}$ terms in the expansion of ${(1 + x)^{18}}$ are equal, then$ r=$
In the expansion of ${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$, the coefficient of ${x^4}$is
If the coefficients of the three consecutive terms in the expansion of $(1+ x )^{ n }$ are in the ratio $1: 5: 20$, then the coefficient of the fourth term is $............$.