Find the coefficient of $x^{6} y^{3}$ in the expansion of $(x+2 y)^{9}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Suppose $x^{6} y^{3}$ occurs in the $(r+1)^{\text {th }}$ term of the expansion $(x+2 y)^{9}$

Now     ${T_{r + 1}} = {\,^9}{C_r}{x^{9 - r}}{(2y)^r} = {\,^9}{C_r}{2^r} \cdot {x^{9 - r}} \cdot {y^r}$

Comparing the indices of $x$ as well as $y$ in $x^{6} y^{3}$ and in $T_{r+1},$ we get $r=3$

Thus, the coefficient of $x^{6} y^{3}$ is

${\,^9}{C_3}{2^3} = \frac{{9!}}{{3!6!}} \cdot {2^3} = \frac{{9.8.7}}{{3.2}} \cdot {2^3} = 672$

Similar Questions

If the coefficents of ${x^3}$ and ${x^4}$ in the expansion of  $\left( {1 + ax + b{x^2}} \right){\left( {1 - 2x} \right)^{18}}$ in powers of $x$ are both zero, then $ (a,b) $ is equal to 

  • [JEE MAIN 2014]

For the natural numbers $m, n$, if $(1-y)^{m}(1+y)^{n}=1+a_{1} y+a_{2} y^{2}+\ldots .+a_{m+n} y^{m+n}$ and $a_{1}=a_{2}$ $=10$, then the value of $(m+n)$ is equal to:

  • [JEE MAIN 2021]

The coefficient of $x^4$ in ${\left[ {\frac{x}{2}\,\, - \,\,\frac{3}{{{x^2}}}} \right]^{10}}$ is :

The coefficient of $x^5$ in the expansion of $\left(2 x^3-\frac{1}{3 x^2}\right)^5$ is

  • [JEE MAIN 2023]

If the second term of the expansion ${\left[ {{a^{\frac{1}{{13}}}}\,\, + \,\,\frac{a}{{\sqrt {{a^{ - 1}}} }}} \right]^n}$ is $14a^{5/2}$ then the value of $\frac{{^n{C_3}}}{{^n{C_2}}}$ is :