1.Relation and Function
hard

If the domain of the function $f(\mathrm{x})=\frac{\cos ^{-1} \sqrt{x^{2}-x+1}}{\sqrt{\sin ^{-1}\left(\frac{2 x-1}{2}\right)}}$ is the interval $(\alpha, \beta]$, then $\alpha+\beta$ is equal to:

A

$2$

B

$\frac{3}{2}$

C

$\frac{1}{2}$

D

$1$

(JEE MAIN-2021)

Solution

$0 \leq x^{2}-x+1 \leq 1$

$\Rightarrow x^{2}-x \leq 0$

$\Rightarrow x \in[0,1]$

$\text { Also, } 0\,<\,\sin ^{-1}\left(\frac{2 x-1}{2}\right) \leq \frac{\pi}{2}$

$\Rightarrow 0\,<\,\frac{2 x-1}{2} \leq 1$

$\Rightarrow 0\,<\,2 x-1 \leq 2$

$1\,<\,2 x \leq 3$

$\frac{1}{2}\,<\,x \leq \frac{3}{2}$

Taking intersection

$x \in\left(\frac{1}{2}, 1\right]$

$\Rightarrow \alpha=\frac{1}{2}, \beta=1$

$\Rightarrow \alpha=\frac{1}{2}, \beta=1$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.