જો વિધેય $f(\mathrm{x})=\frac{\cos ^{-1} \sqrt{x^{2}-x+1}}{\sqrt{\sin ^{-1}\left(\frac{2 x-1}{2}\right)}}$ નો પ્રદેશ $(\alpha, \beta]$ હોય તો $\alpha+\beta$ ની કિમંત મેળવો.
$2$
$\frac{3}{2}$
$\frac{1}{2}$
$1$
જો $x > 2$ માટે $f(x) = \frac{1}{{\sqrt {x + 2\sqrt {2x - 4} } }} + \frac{1}{{\sqrt {x - 2\sqrt {2x - 4} } }}$ ,તો $f(11) = $
વિધાન $-1$ : સમીકરણ $x\, log\, x = 2 - x$ ની $x$ ના ઓછાંમાં ઓછી એક કિમંત $1$ અને $2$ ની વચ્ચે હશે .
વિધાન $-2$ : વિધેય $f(x) = x\, log\, x$ એ અંતરાલ $[1, 2]$ માં વધતું વિધેય છે અને $g (x) = 2 -x$ એ અંતરાલ $[ 1 , 2]$ માં ઘટતું વિધેય છે અને આ વિધેય ના આલેખો છેદબિંદુએ $[ 1 , 2]$ માં આવેલ છે .
ધારો કે $x \ge - 1$ માટે વિધેય $f(x) = {(x + 1)^2}$ આપેલ છે. જો $g(x)$ એ વિધેય છે કે જેનો આલેખએ વિધેય $f(x)$ ના આલેખનું રેખા $y = x$ ની સાપેક્ષ પ્રતીબિંબ હોય તો , $g(x)$ મેળવો.
અહી $A=\{0,1,2,3,4,5,6,7\} $ આપેલ છે. જો એક-એક અને વ્યાપ્ત વિધેય $f: A \rightarrow A$ ની સંખ્યા મેળવો કે જેથી $f(1)+f(2)=3-f(3)$ થાય.