If the electric potential of the inner shell is $10\,V$ and that of the outer shell is $5\,V$ , then the potential at the centre will be.....$V$

815-476

  • A

    $10$

  • B

    $5$

  • C

    $15$

  • D

    $0$

Similar Questions

A capacitor of capacitance $1$ $\mu F$ with stands the maximum voltages $6$ $KV$ while a capacitor of capacitance $2.0$ $\mu F$ with stands the maximum voltage $=$ $4\,KV$. if the two capacitors are connected in series, then the two capacitors combined can take up a maximum voltage of......$KV$

If potential at centre of uniformaly charged ring is $V_0$ then electric field at its centre will be (assume radius $=R$ )

Two point charges $+8q$ and $-2q$ are located at $x = 0$ and $x = L$ respectively. The location of a point on the $x-$ axis at which the net electric field due to these two point charges is zero is

Three identical uncharged metal spheres are at the vertices of an equilateral triangle. One at a time, a small sphere is connected by a conducting wire with a large metal sphere that is charged. The center of the large sphere is in the straight line perpendicular to the plane of equilateral triangle and passing through its centre (see figure). As a result, the first small sphere acquires charge $q_1$ and second charge $q_2 (q_2 < q_1)$ . The charge that the third sphere $q_3$ will acquire is (Assume $l >> R$ , $l >> r$ , $d >> R$ , $d >> r$ )

A solid spherical conducting shell has inner radius a and outer radius $2a$. At the center of the shell a point charge $+Q$ is located . What must the charge of the shell be in order for the charge density on the inner and outer surfaces of the shell to be exactly equal?