Gujarati
9.Straight Line
medium

If the equation of base of an equilateral triangle is $2x - y = 1$ and the vertex is $(-1, 2)$, then the length of the side of the triangle is

A

$\sqrt {\frac{{20}}{3}} $

B

$\frac{2}{{\sqrt {15} }}$

C

$\sqrt {\frac{8}{{15}}} $

D

$\sqrt {\frac{{15}}{2}} $

Solution

(a) $AD = \left| {\,\frac{{ – 2 – 2 – 1}}{{\sqrt {{{(2)}^2} + {{( – 1)}^2}} }}\,} \right| = \left| {\,\frac{{ – 5}}{{\sqrt 5 }}\,} \right| = \sqrt 5 $

$\tan {60^o}$ $ = \frac{{AD}}{{BD}} \Rightarrow \sqrt 3 = \frac{{\sqrt 5 }}{{BD}}$==> $BD = \sqrt {\frac{5}{3}} $

$\therefore $ $BC = 2BD = 2\sqrt {\frac{5}{3}} = \sqrt {\frac{{20}}{3}} $.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.