If the first term of a $G.P. a_1, a_2, a_3......$ is unity such that $4a_2 + 5a_3$ is least, then the common ratio of $G.P.$ is
$-0.4$
$-0.6$
$0.4$
None of these
If $a,\;b,\;c$ are in $A.P.$, $b,\;c,\;d$ are in $G.P.$ and $c,\;d,\;e$ are in $H.P.$, then $a,\;c,\;e$ are in
Find the sum to indicated number of terms in each of the geometric progressions in $\left.x^{3}, x^{5}, x^{7}, \ldots n \text { terms (if } x \neq\pm 1\right)$
Show that the products of the corresponding terms of the sequences $a,$ $ar,$ $a r^{2},$ $......a r^{n-1}$ and $A, A R, A R^{2}, \ldots, A R^{n-1}$ form a $G .P.,$ and find the common ratio.
If $a,\;b,\;c,\;d$ and $p$ are different real numbers such that $({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0$, then $a,\;b,\;c,\;d$ are in
The sum of the series $3 + 33 + 333 + ... + n$ terms is