જો સમગુણોત્તર શ્રેણી $a_1, a_2, a_3......$ નું પ્રથમ પદ એક છે કે જેથી $4a_2 + 5a_3$ એ ન્યૂનતમ થાય તો સમગુણોત્તર શ્રેણીનો સામાન્ય ગુણોત્તર મેળવો.
$-0.4$
$-0.6$
$0.4$
એક પણ નહીં
એક ધન પદોની વધતી સમગુણોત્તર શ્રેણીમાં, બીજા અને છઠ્ઠા પદનો સરવાળો $\frac{70}{3}$ છે તથા ત્રીજા અને પાંચમાં પદનો ગુણાકાર $49$ છે. તો ચોથા, છઠ્ઠા અને આઠમાં પદોનો સરવાળો .......... છે.
જો ${\text{a}}$ અને ${\text{b}}$ વચ્ચેનો સમગુણોત્તર મધ્યક $\frac{{{a^{n + 1}}\, + \,{b^{n + 1}}}}{{{a^n} + {b^n}}}\,\,$ હોય , તો ${\text{n}} $ નું કેટલું થાય ?
$0<\mathrm{c}<\mathrm{b}<\mathrm{a}$ માટે , જો $(\mathrm{a}+\mathrm{b}-2 \mathrm{c}) \mathrm{x}^2+(\mathrm{b}+\mathrm{c}-2 \mathrm{a}) \mathrm{x}$ $+(c+a-2 b)=0$ અને $\alpha \neq 1$ એ એક બીજ હોય તો આપલે પૈકી બે વિધાન પૈકી
$(I)$ જો $\alpha \in(-1,0)$, હોય તો $\mathrm{b}$ એ $\mathrm{a}$ અને $\mathrm{c}$ નો સમગુણોતર મધ્યક બની શકે નહીં.
$(II)$ જો $\alpha \in(0,1)$ હોય તો $\mathrm{b}$ એ $a$ અને $c$ નો સમગુણોતર મધ્યક બની શકે.
જો ${{\text{a}}_{\text{1}}}{\text{, }}{{\text{a}}_{\text{2}}}{\text{, .......... }}{{\text{a}}_{{\text{50}}}}{\text{ }}$ સમગુણોત્તર શ્રેણીમાં હોય તો,$\frac{{{a_1} - {a_3} + {a_5} - ..... + {a_{49}}}}{{{a_2} - {a_4} + {a_6} - .... + {a_{50}}}} = ........$
જો $a = r + r^2 + r^3 + …..+\infty$ હોય તો $r$ નું મૂલ્ય ....... છે.