3 and 4 .Determinants and Matrices
hard

If the following system of linear equations

$2 x+y+z=5$

$x-y+z=3$

$x+y+a z=b$

has no solution, then :

A

$\mathrm{a}=-\frac{1}{3}, \mathrm{~b} \neq \frac{7}{3}$

B

$a \neq \frac{1}{3}, b=\frac{7}{3}$

C

$\mathrm{a} \neq-\frac{1}{3}, \mathrm{~b}=\frac{7}{3}$

D

$\mathrm{a}=\frac{1}{3}, \mathrm{~b} \neq \frac{7}{3}$

(JEE MAIN-2021)

Solution

Here $\mathrm{D}=\left|\begin{array}{ccc}2 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & \mathrm{a}\end{array}\right|$

$=2(-\mathrm{a}-1)-1(\mathrm{a}-1)+1+1$

$=1-3 \mathrm{a}$

$\mathrm{D}_{3}=\left|\begin{array}{ccc}2 & 1 & 5 \\ 1 & -1 & 3 \\ 1 & 1 & \mathrm{~b}\end{array}\right|$

$=2(-b-3)-1(b-3)+5(1+1)$

$=7-3 b$

for $a=\frac{1}{3}, b \neq \frac{7}{3}$, system has no solutions

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.