If the following system of linear equations
$2 x+y+z=5$
$x-y+z=3$
$x+y+a z=b$
has no solution, then :
$\mathrm{a}=-\frac{1}{3}, \mathrm{~b} \neq \frac{7}{3}$
$a \neq \frac{1}{3}, b=\frac{7}{3}$
$\mathrm{a} \neq-\frac{1}{3}, \mathrm{~b}=\frac{7}{3}$
$\mathrm{a}=\frac{1}{3}, \mathrm{~b} \neq \frac{7}{3}$
Which of the following is correct?
Let $\omega = - \frac{1}{2} + i\frac{{\sqrt 3 }}{2}$. Then the value of the determinant $\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{ - 1 - {\omega ^2}}&{{\omega ^2}}\\1&{{\omega ^2}}&{{\omega ^4}}\end{array}\,} \right|$ is
Find equation of line joining $(1,2)$ and $(3,6)$ using determinates
Let $\lambda \in R .$ The system of linear equations
$2 x_{1}-4 x_{2}+\lambda x_{3}=1$
$x_{1}-6 x_{2}+x_{3}=2$
$\lambda x_{1}-10 x_{2}+4 x_{3}=3$ is inconsistent for
$\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{m{a_1}}&{{b_1}}\\{{a_2}}&{m{a_2}}&{{b_2}}\\{{a_3}}&{m{a_3}}&{{b_3}}\end{array}\,} \right| = $