If $A = \left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,B = \left| {\,\begin{array}{*{20}{c}}1&1&1\\{{a^2}}&{{b^2}}&{{c^2}}\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,C = \left| {\,\begin{array}{*{20}{c}}a&b&c\\{{a^2}}&{{b^2}}&{{c^2}}\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,$ then which relation is correct
$A = B$
$A = C$
$B = C$
None of these
Consider the following system of questions $\alpha x+2 y+z=1$ ; $2 \alpha x+3 y+z=1$ ; $3 x+\alpha y+2 z=\beta$ . For some $\alpha, \beta \in R$. Then which of the following is NOT correct.
Given the system of equation $a(x + y + z)=x,b(x + y + z) = y, c(x + y + z) = z$ where $a,b,c$ are non-zero real numbers. If the real numbers $x,y,z$ are such that $xyz \neq 0,$ then $(a + b + c)$ is equal to-
Let the system of linear equations $x +2 y + z =2$, $\alpha x +3 y - z =\alpha,-\alpha x + y +2 z =-\alpha$ be inconsistent. Then $\alpha$ is equal to
The system of equations $\lambda x + y + z = 0,$ $ - x + \lambda y + z = 0,$ $ - x - y + \lambda z = 0$, will have a non zero solution if real values of $\lambda $ are given by
If $px^4 + qx^3 + rx^2 + sx + t$ $\equiv$ $\left| {\begin{array}{*{20}{c}}{{x^2}\, + \,\,3x}&{x\, - \,1}&{x\, + \,3}\\{x\, + \,1}&{2\, - \,x}&{x\, - \,3}\\{x\, - \,3}&{x\, + \,4}&{3x}\end{array}} \right|$ then $t =$