If $\mathrm{a}_{\mathrm{r}}=\cos \frac{2 \mathrm{r} \pi}{9}+i \sin \frac{2 \mathrm{r} \pi}{9}, \mathrm{r}=1,2,3, \ldots, i=\sqrt{-1}$ then the determinant $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right|$ is equal to :

  • [JEE MAIN 2021]
  • A

    $a_{2} a_{6}-a_{4} a_{8}$

  • B

    $\mathrm{a}_{9}$

  • C

    $a_{1} a_{9}-a_{3} a_{7}$

  • D

    $\mathrm{a}_{5}$

Similar Questions

How many values of $k $ , systeam of linear equations $\left( {k + 1} \right)x + 8y = 4k\;,\;kx + \left( {k + 3} \right)y$$ = 3k - 1$ has no solutions.

  • [IIT 2002]

If $A = \left| {\,\begin{array}{*{20}{c}}{\sin (\theta + \alpha )}&{\cos (\theta + \alpha )}&1\\{\sin (\theta + \beta )}&{\cos (\theta + \beta )}&1\\{\sin (\theta + \gamma )}&{\cos (\theta + \gamma )}&1\end{array}\,} \right|$ ,then

Evaluate the determinants

$\left|\begin{array}{ccc}2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right|$

$\left| {\,\begin{array}{*{20}{c}}{13}&{16}&{19}\\{14}&{17}&{20}\\{15}&{18}&{21}\end{array}\,} \right| = $

If $A\, = \,\left[ \begin{gathered}
  1\ \ \ \,1\ \ \ \,2\ \ \  \hfill \\
  0\ \ \ \,2\ \ \ \,1\ \ \  \hfill \\
  1\ \ \ \,0\ \ \ \,2\ \ \  \hfill \\ 
\end{gathered}  \right]$ and $A^3 = (aA-I) (bA-I)$,where $a, b$ are integers and $I$ is a $3 × 3$ unit matrix then value of $(a + b)$ is equal to