If the fourth term in the binomial expansion of $\left(\sqrt{\frac{1}{x^{1+\log _{10} x}}}+x^{\frac{1}{12}}\right)^{6}$ is equal to $200$, and $x > 1$, then the value of $x$ is

  • [JEE MAIN 2019]
  • A

    $10^4$

  • B

    $100$

  • C

    $10^3$

  • D

    None of these

Similar Questions

The coefficient of $x^{2012}$ in the expansion of $(1-x)^{2008}\left(1+x+x^2\right)^{2007}$ is equal to

  • [JEE MAIN 2024]

The number of integral terms in the expansion of ${\left( {\sqrt 3 + \sqrt[8]{5}} \right)^{256}}$ is

  • [AIEEE 2003]

Find the term independent of $x$ in the expansion of $\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{6}$

The value of $x$, for which the 6th term in the expansion of ${\left\{ {{2^{{{\log }_2}\sqrt {({9^{x - 1}} + 7)} }} + \frac{1}{{{2^{(1/5){{\log }_2}({3^{x - 1}} + 1)}}}}} \right\}^7}$ is $84$, is equal to

Let $\mathrm{m}$ and $\mathrm{n}$ be the coefficients of seventh and thirteenth terms respectively in the expansion of $\left(\frac{1}{3} \mathrm{x}^{\frac{1}{3}}+\frac{1}{2 \mathrm{x}^{\frac{2}{3}}}\right)^{18}$. Then $\left(\frac{\mathrm{n}}{\mathrm{m}}\right)^{\frac{1}{3}}$ is :

  • [JEE MAIN 2024]