The coefficient of $x^9$ in the expansion of $(1+x)\left(1+x^2\right)\left(1+x^3\right) \ldots . .\left(1+x^{100}\right)$ is

  • [IIT 2015]
  • A

    $6$

  • B

    $7$

  • C

    $8$

  • D

    $9$

Similar Questions

Let $\alpha>0, \beta>0$ be such that $\alpha^{3}+\beta^{2}=4 .$ If the maximum value of the term independent of $x$ in the binomial expansion of $\left(\alpha x^{\frac{1}{9}}+\beta x^{-\frac{1}{6}}\right)^{10}$ is $10 k$ then $\mathrm{k}$ is equal to

  • [JEE MAIN 2020]

If $n$ is the degree of the polynomial,

${\left[ {\frac{1}{{\sqrt {5{x^3} + 1}  - \sqrt {5{x^3} - 1} }}} \right]^8} $$+ {\left[ {\frac{1}{{\sqrt {5{x^3} + 1}  + \sqrt {5{x^3} - 1} }}} \right]^8}$ and $m$ is the coefficient of $x^{12}$ in it, then the ordered pair $(n, m)$ is equal to

  • [JEE MAIN 2018]

If the coefficients of ${5^{th}}$, ${6^{th}}$and ${7^{th}}$ terms in the expansion of ${(1 + x)^n}$be in $A.P.$, then $n =$

In the expansion of ${\left( {x - \frac{1}{x}} \right)^6}$, the constant term is

In the expansion of ${\left( {\frac{a}{x} + bx} \right)^{12}}$,the coefficient of $x^{-10}$ will be