જો વિધેય $f\,:\,R - \,\{ 1, - 1\}  \to A$ ; $f\,(x)\, = \frac{{{x^2}}}{{1 - {x^2}}}$ એ વ્યાપ્ત વિધેય હોય તો $A$ મેળવો .

  • [JEE MAIN 2019]
  • A

    $R\, - \,[ - 1,0)$

  • B

    $R\, - \,( - 1,0)$

  • C

    $R\, - \,\{  - 1\} $

  • D

    $[0,\infty )$

Similar Questions

$f(x)=4 \sin ^{-1}\left(\frac{x^2}{x^2+1}\right)$ નો વિસ્તાર $......$

  • [JEE MAIN 2023]

જો $A=\{a, b, c\}$ અને $B=\{1,2,3,4\}$ હોય તો ગણ $C =\{ f : A \rightarrow B \mid 2 \in f ( A )$ અને $f$ એ એક એક વિધેય નથી.$\}$ માં કેટલા ઘટકો આવેલા છે 

  • [JEE MAIN 2020]

વિધેય $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ માટે $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y}) \forall \mathrm{x}, \mathrm{y} \in \mathrm{R}$ થાય જો $\mathrm{f}(1)=2$ અને $g(n)=\sum \limits_{k=1}^{(n-1)} f(k), n \in N$ હોય તો $n$ કિમત મેળવો જ્યાં $\mathrm{g}(\mathrm{n})=20$ થાય 

  • [JEE MAIN 2020]

જો $\phi (x) = {a^x}$, તો ${\{ \phi (p)\} ^3}  = . . .$

દરેક $x\,\, \in \,R\,,x\, \ne \,0,$ જો ${f_0}(x) = \frac{1}{{1 - x}}$ અને ${f_{n + 1}}(x) = {f_0}({f_n}(x)),$ $n\, = 0,1,2,....$ તો ${f_{100}}(3) + {f_1}\left( {\frac{2}{3}} \right) + {f_2}\left( {\frac{3}{2}} \right)$ ની કિમંત મેળવો.

  • [JEE MAIN 2016]