વિઘેય $f(x)=\frac{\cos ^{-1}\left(\frac{x^{2}-5 x+6}{x^{2}-9}\right)}{\log _{e}\left(x^{2}-3 x+2\right)} $ નો પ્રદેશ ........ છે.
$(-\infty, 1) \cup(2, \infty)$
$(2, \infty)$
$\left[-\frac{1}{2}, 1\right) \cup(2, \infty)$
$\left[-\frac{1}{2}, 1\right) \cup(2, \infty)-\left\{\frac{3+\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2}\right\}$
જો $R _{1}$ અને $R _{2}$ બે સંબંધો નીચે મુજબ વ્યાખીયાયિત છે :
$R _{1}=\left\{( a , b ) \in R ^{2}: a ^{2}+ b ^{2} \in Q \right\}$ અને $R _{2}=\left\{( a , b ) \in R ^{2}: a ^{2}+ b ^{2} \notin Q \right\}$
જ્યાં $Q$ એ સંમેય સંખ્યાઓનો ગણ છે તો
જો $f : R \to R$ માટે વિધેય $f(x) = - \frac{{|x{|^5} + |x|}}{{1 + {x^4}}}$;હોય તો $f(x)$ નો ગ્રાફ .......... ચરણમાંથી પસાર થાય.
જો વિધેય એ $f(x + y) = f(x)f(y)$ શરતનું પાલન કરે કે જયાં $x,\;y \in N$ હોય અને $f(1) = 3$અને $\sum\limits_{x = 1}^n {f(x) = 120} $ હોય તો $n$ ની કિંમત મેળવો
$2 f(a)-f(b)+3 f(c)+$ $f ( d )=0$ થાય તેવા એક - એક વિધેયો $f :\{ a , b , c , d \} \rightarrow$ $\{0,1,2, \ldots ., 10\}$ ની સંખ્યા ......... છે.
જો $A = \left\{ {{x_1},{x_2},{x_3},.....,{x_7}} \right\}$ અને $B = \left\{ {{y_1},{y_2},{y_3}} \right\}$ મા અનુક્રમે સાત અને ત્રણ ભિન્ન સભ્યો હોય તો વિધેય $f:A \to B$ ની કુલ સંખ્યા ..... મળે કે જેથી વિધેયો વ્યાપત થાય જ્યા ત્રન સભ્યો $x$ ન એ ગણ $A$ મા એવા છે કે જેથી $f(x) = {y_2}$ થાય