અહી ગણ $A$ અને $B$ એ વિધેય $f(x)=\frac{1}{\sqrt{\lceil x\rceil-x}}$ નો પ્રદેશ અને વિસ્તાર દર્શાવે છે. કે જ્યાં $\lceil x \rceil$ એ ન્યૂનતમ પૃણાંક વિધેય છે.આપેલ વિધાન જુઓ.
$( S 1): A \cap B =(1, \infty)-N$ અને
$( S 2): A \cup B=(1, \infty)$
માત્ર $(S1)$ એ સત્ય છે.
બંને $(S1)$ અને $(S2)$ એ સત્ય છે.
બંને $(S1)$ અને $(S2)$ એ અસત્ય છે.
માત્ર $(S2)$ એ સત્ય છે.
જો $f(x) = \frac{2x^2-14x^2-8x+49}{x^4-7x^2-4x+23}$ નો વિસ્તારગણ ($a, b$] હોય તો ($a +b$) ની કિમત ........ મળે.
ધારો કે $\mathrm{A}=\{1,3,7,9,11\}$ અને $\mathrm{B}=\{2,4,5,7,8,10,12\}$. તો $f(1)+f(3)=14$ થાય તેવા એક-એક વિધેયો $f: A \rightarrow B$ ની કુલ સંખ્યા .......... છે.
સાબિત કરો કે $f: R \rightarrow R ,$ $f(x)=[x]$ દ્વારા વ્યાખ્યાયિત મહત્તમ પૂર્ણાક વિધેય $(Greatest\, integer \,function)$ એક-એક પણ નથી અને વ્યાપ્ત પણ નથી. અહીં, $[x]$ એ $x$ થી નાના અથવા $x$ ને સમાન તમામ પૂર્ણાકોમાં મહત્તમ પૂર્ણાક દર્શાવે છે. બીજા શબ્દોમાં $x$ થી અધિક નહિ તેવા પૂર્ણાકોમાં સૌથી મોટો પૂર્ણાક $x$ છે.
ધારોકે $A =\{1,2,3,4,5\}$ અને $B =\{1,2,3,4,5,6\}$. તો $f(1)+f(2)=f(4)-1$ નું સમાધાન કરતા વિધેયો $f: A \rightarrow B$ ની સંખ્યા $=.........$
આપલે વિધેય $f(x) = \frac{{{a^x} + {a^{ - x}}}}{2},\;(a > 2)$. તો $f(x + y) + f(x - y) = $