5. Continuity and Differentiation
medium

If the function $f(x) = {x^3} - 6{x^2} + ax + b$ satisfies Rolle’s theorem in the interval $[1,\,3]$ and $f'\left( {{{2\sqrt 3 + 1} \over {\sqrt 3 }}} \right) = 0$, then $a =$ ..............

A

$- 11$

B

$- 6$

C

$6$

D

$11$

Solution

(d) $f(x) = {x^3} – 6{x^2} + ax + b$

==> $f'(x) = 3{x^2} – 12x + a$

==> $f'(c) = 0$ ==> $f'\left( {2 + \frac{1}{{\sqrt 3 }}} \right) = 0$

==> $3{\left( {2 + \frac{1}{{\sqrt 3 }}} \right)^2} – 12\left( {2 + \frac{1}{{\sqrt 3 }}} \right) + a = 0$

==> $3\left( {4 + \frac{1}{3} + \frac{4}{{\sqrt 3 }}} \right) – 12\left( {2 + \frac{1}{{\sqrt 3 }}} \right) + a = 0$

==> $12 + 1 + 4\sqrt 3 – 24 – 4\sqrt 3 + a = 0$ ==> $a = 11$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.