- Home
- Standard 12
- Mathematics
5. Continuity and Differentiation
hard
If the functions $f ( x )=\frac{ x ^3}{3}+2 bx +\frac{a x^2}{2}$ and $g(x)=\frac{x^3}{3}+a x+b x^2, a \neq 2 b$ have a common extreme point, then $a+2 b+7$ is equal to
A
$4$
B
$\frac{3}{2}$
C
$3$
D
$6$
(JEE MAIN-2023)
Solution
$f ^{\prime}( x )= x ^2+2 b + ax$
$g ^{\prime}( x )= x ^2+ a +2 bx$
$(2 b – a )- x (2 b – a )=0$
$\therefore x =1 \text { is the common root }$
$\text { Put } x =1 \text { in } f ^{\prime}( x )=0 \text { or } g ^{\prime}( x )=0$
$1+2 b + a =0$
$7+2 b + a =6$
Standard 12
Mathematics