If $f:[-5,5] \rightarrow \mathrm{R}$ is a differentiable function and if $f^{\prime}(x)$ does not vanish anywhere, then prove that $f(-5) \neq f(5).$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $f:[-5,5] \rightarrow R$ is a differentiable function.

Since every differentiable function is a continuous function, we obtain

a) $f$ is continuous on $[-5,5].$

b) $f$ is continuous on $(-5,5).$

Therefore, by the Mean Value Theorem, there exists $c \in(-5,5)$ such that

$f^{\prime}(c)=\frac{f(5)-f(-5)}{5-(-5)}$

$\Rightarrow 10 f^{\prime}(c)=f(5)-f(-5)$

It is also given that $f^{\prime}(x)$ does not vanish anywhere.

$\therefore f^{\prime}(c) \neq 0$

$\Rightarrow 10 f^{\prime}(c) \neq 0$

$\Rightarrow f(5)-f(-5) \neq 0$

$\Rightarrow f(5) \neq f(-5)$

Hence, proved.

Similar Questions

Let $f$ be any function defined on $R$ and let it satisfy the condition

$|f( x )-f( y )| \leq\left|( x - y )^{2}\right|, \forall( x , y ) \in R$ If $f(0)=1,$ then

  • [JEE MAIN 2021]

Consider the function $f(x) = {e^{ - 2x}}$ $sin\, 2x$ over the interval $\left( {0,{\pi \over 2}} \right)$. A real number $c \in \left( {0,{\pi \over 2}} \right)\,,$ as guaranteed by Rolle’s theorem, such that $f'\,(c) = 0$ is

Which of the following function can satisfy Rolle's theorem ?

In the mean value theorem, $f(b) - f(a) = (b - a)f'(c) $ if $a = 4$, $b = 9$ and $f(x) = \sqrt x $ then the value of $c$  is

Let $f, g:[-1,2] \rightarrow R$ be continuous functions which are twice differentiable on the interval $(-1,2)$. Let the values of $f$ and $g$ at the points $-1.0$ and $2$ be as given in the following table:

  $x=-1$ $x=0$ $x=2$
$f(x)$ $3$ $6$ $0$
$g(x)$ $0$ $1$ $-1$

In each of the intervals $(-1,0)$ and $(0,2)$ the function $(f-3 g)^{\prime \prime}$ never vanishes. Then the correct statement(s) is(are)

$(A)$ $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly three solutions in $(-1,0) \cup(0,2)$

$(B)$ $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly one solution in $(-1,0)$

$(C)$ $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly one solution in $(0,2)$

$(D)$ $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly two solutions in $(-1,0)$ and exactly two solutions in $(0,2)$

  • [IIT 2015]