Gujarati
8. Sequences and Series
easy

If the geometric mean between $a$ and $b$ is $\frac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}}$, then the value of $n$ is

A

$1$

B

$-1/2$

C

$1/2$

D

$2$

Solution

(b) As given $\frac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}} = {(ab)^{1/2}}$

$ \Rightarrow $ ${a^{n + 1}} – {a^{n + 1/2}}{b^{1/2}} + {b^{n + 1}} – {a^{1/2}}{b^{n + 1/2}} = 0$

$ \Rightarrow $ $({a^{n + 1/2}} – {b^{n + 1/2}})({a^{1/2}} – {b^{1/2}}) = 0$

$ \Rightarrow $ ${a^{n + 1/2}} – {b^{n + 1/2}} = 0$                                           

$(\because \;a \ne b \Rightarrow {a^{1/2}} \ne {b^{1/2}})$                            

$ \Rightarrow $ ${\left( {\frac{a}{b}} \right)^{n + 1/2}} = 1 = {\left( {\frac{a}{b}} \right)^0} $

$\Rightarrow n + \frac{1}{2} = 0$

$\Rightarrow n = – \frac{1}{2}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.