Gujarati
Hindi
7.Gravitation
normal

The additional kinetic energy to be provided to a satellite of mass $m$ revolving around a planet of mass $M$, to transfer it from a circular orbit of radius $R_1$ to another of radius $R_2\,(R_2 > R_1)$ is

A

$GmM\,\left( {\frac{1}{{{R_1}}} - \frac{1}{{{R_2}}}} \right)$

B

$2GmM\,\left( {\frac{1}{{{R_1}}} - \frac{1}{{{R_2}}}} \right)$

C

$\frac{1}{2}GmM\,\left( {\frac{1}{{{R_1}}} - \frac{1}{{{R_2}}}} \right)$

D

$GmM\,\left( {\frac{1}{{R_1^2}} - \frac{1}{{R_2^2}}} \right)$

Solution

Additional kinetic energy $=\mathrm{TE}_{2}-\mathrm{TE}_{1}$

$ =  – \frac{{{\rm{GMm}}}}{{2{{\rm{R}}_2}}} – \left( { – \frac{{{\rm{GMm}}}}{{2{{\rm{R}}_1}}}} \right)$

$ = \frac{1}{2}{\rm{GmM}}\left( {\frac{1}{{{{\rm{R}}_1}}} – \frac{1}{{{{\rm{R}}_2}}}} \right)$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.