If the kinetic energy of a body is directly proportional to time $t$, the magnitude of force acting on the body is
$(i)$ directly proportional to $\sqrt t$
$(ii)$ inversely proportional to $\sqrt t$
$(iii)$ directly proportional to the speed of the body
$(iv)$ inversely proportional to the speed of body
$(i), (ii)$
$(i), (iii)$
$(ii), (iv)$
$(i), (iv)$
A uniform chain of length $2\,m$ is kept on a table such that a length of $60\,\,cm$ hangs freely from the edge of the table. The total mass of the chain is $4\,kg$. What is the work done in pulling the entire chain on the table .............. $\mathrm{J}$
$A$ ball is dropped from $a$ height $h$. As it bounces off the floor, its speed is $80$ percent of what it was just before it hit the floor. The ball will then rise to $a$ height of most nearly .............. $\mathrm{h}$
The spacecraft of mass $M$ moves with velocity $V$ in free space at first, then it explodes breaking into two pieces. If after explosion a piece of mass $m$ comes to rest, the other piece of space craft will have a velocity
A body of mass $2\,kg$ makes an elastic collision with another body at rest and continues to move in the original direction with one fourth of its original speed, The mass of the second body which collides with the first body is ............... $\mathrm{kg}$
A particle of mass $m$ is moving in a circular path of constant radius $r$ such that its centripetal acceleration $a_c$ is varying with time $t$ as, $a_c = k^2rt^2$, The power delivered to the particle by the forces acting on it is