If the length of tangent drawn from the point $(5, 3)$ to the circle ${x^2} + {y^2} + 2x + ky + 17 = 0$ be $7$, then $k$ =

  • A

    $4$

  • B

    $-4$

  • C

    $-6$

  • D

    $13\over2$

Similar Questions

Tangents are drawn from any point on the circle $x^2 + y^2 = R^2$ to the circle $x^2 + y^2 = r^2$. If the line joining the points of intersection of these tangents with the first circle also touch the second, then $R$ equals

The slope of the tangent at the point $(h,h)$ of the circle ${x^2} + {y^2} = {a^2}$ is

Pair of tangents are drawn from every point on the line $3x + 4y = 12$ on the circle $x^2 + y^2 = 4$. Their variable chord of contact always passes through a fixed point whose co-ordinates are

Tangents are drawn from the point $(-1,-4)$ to the circle $x^2 + y^2 - 2x + 4y + 1 = 0$. Length of corresponding chord of contact will be-

The equations of the tangents to the circle ${x^2} + {y^2} - 6x + 4y = 12$ which are parallel to the straight line $4x + 3y + 5 = 0$, are