The line $x = y$ touches a circle at the point $(1, 1)$. If the circle also passes through the point $(1, -3)$, then its radius is
$3\sqrt 2$
$3$
$2$
$2\sqrt 2$
The angle between the pair of tangents from the point $(1, 1/2)$ to the circle $x^2 + y^2 + 4x + 2y -4=0$ is-
The condition that the line $x\cos \alpha + y\sin \alpha = p$ may touch the circle ${x^2} + {y^2} = {a^2}$ is
The angle between the pair of tangents from the point $(1, 1/2)$ to the circle $x^2 + y^2 + 4x + 2y -4=0$ is-
$\text { Let } $S$ \text { be the circle in the } xy \text {-plane defined by the equation } x ^2+ y ^2=4 \text {. }$
($1$) Let $E_1, E_2$ and $F_1 F_2$ be the chords of $S$ passing through the point $P_0(1,1)$ and parallel to the $x$-axis and the $y$-axis, respectively. Let $G _1 G _2$ be the chord of $S$ passing through $P _0$ and having slope -$1$ . Let the tangents to $S$ at $E_1$ and $E_2$ meet at $E_3$, the tangents to $S$ at $F_1$ and $F_2$ meet at $F_3$, and the tangents to $S$ at $G_1$ and $G_2$ meet at $G_3$. Then, the points $E_3, F_3$, and $G _3$ lie on the curve
$(A)$ $x+y=4$ $(B)$ $(x-4)^2+(y-4)^2=16$ $(C)$ $(x-4)(y-4)=4$ $(D)$ $x y=4$
($2$) Let $P$ be a point on the circle $S$ with both coordinates being positive. Let the tangent to $S$ at $P$ intersect the coordinate axes at the points $M$ and $N$. Then, the mid-point of the line segment MN must lie on the curve
$(A)$ $(x+y)^2=3 x y$ $(B)$ $x^{2 / 3}+y^{2 / 3}=2^{4 / 3}$ $(C)$ $x^2+y^2=2 x y$ $(D)$ $x^2+y^2=x^2 y^2$
Give the answer or quetion ($1$) and ($2$)
The line $y = mx + c$ will be a normal to the circle with radius $r$ and centre at $(a, b)$, if