- Home
- Standard 11
- Mathematics
10-1.Circle and System of Circles
medium
If the line $y$ $\cos \alpha = x\sin \alpha + a\cos \alpha $ be a tangent to the circle ${x^2} + {y^2} = {a^2}$, then
A
${\sin ^2}\alpha = 1$
B
${\cos ^2}\alpha = 1$
C
${\sin ^2}\alpha = {a^2}$
D
${\cos ^2}\alpha = {a^2}$
Solution
(b) The tangent is $y$ $\cos \alpha = x\sin \alpha + a\cos \alpha $
$ \Rightarrow y = x\tan \alpha + a$
It is a tangent to the circle ${x^2} + {y^2} = {a^2}$, if
${a^2} = {a^2}(1 + {\tan ^2}\alpha ) $
$\Rightarrow {\sec ^2}\alpha = 1 $
$\Rightarrow {\cos ^2}\alpha = 1$.
Standard 11
Mathematics