Gujarati
10-1.Circle and System of Circles
medium

यदि रेखा $y$ $\cos \alpha  = x\sin \alpha  + a\cos \alpha $ वृत्त ${x^2} + {y^2} = {a^2}$ की स्पर्श रेखा हो, तो

A

${\sin ^2}\alpha = 1$

B

${\cos ^2}\alpha = 1$

C

${\sin ^2}\alpha = {a^2}$

D

${\cos ^2}\alpha = {a^2}$

Solution

स्पषी का समीकरण है, $y$ $\cos \alpha  = x\sin \alpha  + a\cos \alpha $

$ \Rightarrow y = x\tan \alpha  + a$ है।

यह वृत्त ${x^2} + {y^2} = {a^2}$ की स्पषी होगी यदि और केवल यदि ${a^2} = {a^2}(1 + {\tan ^2}\alpha )$

$ \Rightarrow {\sec ^2}\alpha  = 1 $

$\Rightarrow {\cos ^2}\alpha  = 1$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.