- Home
- Standard 11
- Mathematics
10-1.Circle and System of Circles
hard
If a line, $y=m x+c$ is a tangent to the circle, $(x-3)^{2}+y^{2}=1$ and it is perpendicular to a line $\mathrm{L}_{1},$ where $\mathrm{L}_{1}$ is the tangent to the circle, $\mathrm{x}^{2}+\mathrm{y}^{2}=1$ at the point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),$ then
A
$c^{2}-6 c+7=0$
B
$c^{2}+6 c+7=0$
C
$c^{2}+7 c+6=0$
D
$c^{2}-7 c+6=0$
(JEE MAIN-2020)
Solution
Slope of tangent to $\mathrm{x}^{2}+\mathrm{y}^{2}=1$ at $\mathrm{P}\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
$2 \mathrm{x}+2 \mathrm{yy}^{\prime}=\left.0 \Rightarrow \mathrm{m}_{\mathrm{T}}\right|_{\mathrm{P}}=-1$
$y=m x+c$ is tangent to $(x-3)^{2}+y^{2}=1$
$y=x+c$ is tangent to $(x-3)^{2}+y^{2}=1$
$\left|\frac{c+3}{\sqrt{2}}\right|=1 \Rightarrow c^{2}+6 c+7=0$
Standard 11
Mathematics