If the lines $ax + y + 1 = 0$, $x + by + 1 = 0$ and $x + y + c = 0$ (where $a, b$ and $c$ are distinct and different from $1$ ) are concurrent, then the value of $\frac{1}{{1 - a}} + \frac{1}{{1 - b}} + \frac{1}{{1 - c}} =$ 

  • A

    $-1$

  • B

    $1$

  • C

    $0$

  • D

    $2$

Similar Questions

For how many diff erent values of $a$ does the following system have at least two distinct solutions?

$a x+y=0$

$x+(a+10) y=0$

  • [KVPY 2017]

For non zero, $a,b,c$ if $\Delta = \left| {\,\begin{array}{*{20}{c}}{1 + a}&1&1\\1&{1 + b}&1\\1&1&{1 + c}\end{array}} \right| = 0$, then the value of $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = $

For which of the following ordered pairs $(\mu, \delta)$ the system of linear equations  $x+2 y+3 z=1$ ; $3 x+4 y+5 z=\mu$ ; $4 x+4 y+4 z=\delta$ is inconsistent?

  • [JEE MAIN 2020]

The system of linear equation $x + y + z = 2, 2x + 3y + 2z = 5$, $2x + 3y + (a^2 -1)\,z = a + 1$ then

  • [JEE MAIN 2019]

The value of $'a'$ for which the system of equation  $a^3x + (a + 1)^3y + (a + 2)^3 z = 0$ ; $ax + (a + 1)y + (a + 2)z = 0$ ; $x + y + z = 0$  has a non-zero solution is :-