If the lines $ax + y + 1 = 0$, $x + by + 1 = 0$ and $x + y + c = 0$ (where $a, b$ and $c$ are distinct and different from $1$ ) are concurrent, then the value of $\frac{1}{{1 - a}} + \frac{1}{{1 - b}} + \frac{1}{{1 - c}} =$
$-1$
$1$
$0$
$2$
If the system of linear equation $x - 4y + 7z = g,\,3y - 5z = h, \,-\,2x + 5y - 9z = k$ is
consistent, then
Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha\end{array}\right]$ and $|2 A|^3=2^{21}$ where $\alpha, \beta \in Z$, Then a value of $\alpha $ is
Prove that the determinant $\left|\begin{array}{ccc}x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x\end{array}\right|$ is independent of $\theta$
Let $M$ and $N$ be two $3 \times 3$ matrices such that $M N=N M$. Further, if $M \neq N^2$ and $M^2=N^4$, then
$(A)$ determinant of $\left( M ^2+ MN ^2\right)$ is $0$
$(B)$ there is a $3 \times 3$ non-zero matrix $U$ such that $\left( M ^2+ MN ^2\right) U$ is the zero matrix
$(C)$ determinant of $\left( M ^2+ MN ^2\right) \geq 1$
$(D)$ for a $3 \times 3$ matrix $U$, if $\left( M ^2+ MN ^2\right) U$ equals the zero matrix then $U$ is the zero matrix
For what value of $k$ to the following system of equations possess a non-trivial solution ?
$x + ky + 3z = 0$ ; $3x + ky + 2z = 0$ ; $2x + 3y + 4z = 0$