Gujarati
Hindi
3 and 4 .Determinants and Matrices
normal

If the lines $ax + y + 1 = 0$, $x + by + 1 = 0$ and $x + y + c = 0$ (where $a, b$ and $c$ are distinct and different from $1$ ) are concurrent, then the value of $\frac{1}{{1 - a}} + \frac{1}{{1 - b}} + \frac{1}{{1 - c}} =$ 

A

$-1$

B

$1$

C

$0$

D

$2$

Solution

For concurrent lines, $\left| {\begin{array}{*{20}{c}}
  a&1&1 \\ 
  1&b&1 \\ 
  1&1&c 
\end{array}} \right|\, = \,0$

Applyling $c_2-c_1$ and $c_3-c_1$, we get

$\Delta \, = \,\left| {\begin{array}{*{20}{c}}
  a&{1 – a}&{1 – a} \\ 
  1&{b – 1}&0 \\ 
  1&0&{c – 1} 
\end{array}} \right|\, = \,0$

$a(b – 1)\,(c – 1)\, – \,(1 – a)\,(c – 1)$ $\, – (1 – a)\,(b – 1)\, = \,0$

Dividing $(1 – a)\,(1 – b)\,(1 – c)$, we get

$\frac{a}{{1 – a}}\, + \,\frac{1}{{1 – b}}\, + \,\frac{1}{{1 – c}} = 0$

$\frac{1}{{1 – a}}\, + \,\frac{1}{{1 – b}}\, + \,\frac{1}{{1 – c}} = \frac{{1 – a}}{{1 – a}}\, = 1$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.