If the magnetic field of a plane electromagnetic wave is given by (The speed of light $ = 3 \times {10^8}\,m/s$ )
$B = 100 \times {10^{ - 6}}\,\sin \,\left[ {2\pi \times 2 \times {{10}^{15}}\,\left( {t - \frac{x}{c}} \right)} \right]$
then the maximum electric field associated with it is
$6 \times {10^4}\,N/C$
$3 \times {10^4}\,N/C$
$4 \times {10^4}\,N/C$
$4.5 \times {10^4}\,N/C$
The speed of electromagnetic radiation in vacuum is
If ${\varepsilon _0}$ and ${\mu _0}$ are respectively, the electric permittivity and the magnetic permeability of free space. $\varepsilon $ and $\mu $ the corresponding quantities in a medium, the refractive index of the medium is
Calculate the electric and magnetic fields produced by the radiation coming from a $100\; W$ bulb at a distance of $3\; m$. Assume that the efficiency of the bulb is $2.5 \%$ and it is a point source.
A point source of $100\,W$ emits light with $5 \%$ efficiency. At a distance of $5\,m$ from the source, the intensity produced by the electric field component is :
This question has Statement $-1$ and Statement $-2$ . Of the four choices given after the statements, choose the one that best describes the two statements
Statement $-1$ : Sky wave signals are used for long distance radio communication. These signals are in general, less stable than ground wave signals
Statement $-2$ : The state of ionosphere varies from hour to hour, day to day and season to season