If the magnetic field in a plane electromagnetic wave is given by

$\overrightarrow{\mathrm{B}}=3 \times 10^{-8} \sin \left(1.6 \times 10^{3} \mathrm{x}+48 \times 10^{10} \mathrm{t}\right) \hat{\mathrm{j}}\; \mathrm{T}$

then what will be expression for electric field?

  • [JEE MAIN 2020]
  • A

    $\overrightarrow{\mathrm{E}}=\left(9 \sin \left(1.6 \times 10^{3} \mathrm{x}+48 \times 10^{10} \mathrm{t}\right) \hat{\mathrm{k}} \;\mathrm{V} / \mathrm{m}\right)$

  • B

    $\left.\overrightarrow{\mathrm{E}}=\left(3 \times 10^{-8} \sin \left(1.6 \times 10^{3} \mathrm{x}+48 \times 10^{10} \mathrm{t}\right)\right) \hat{\mathrm{i}}\; \mathrm{V} / \mathrm{m}\right)$

  • C

    $\overrightarrow{\mathrm{E}}=\left(60 \sin \left(1.6 \times 10^{3} \mathrm{x}+48 \times 10^{10} \mathrm{t}\right) \hat{\mathrm{k}}\; \mathrm{V} / \mathrm{m}\right)$

  • D

    $\overrightarrow{\mathrm{E}}=\left(3 \times 10^{-8} \sin \left(1.6 \times 10^{3} \mathrm{x}+48 \times 10^{10} \mathrm{t}\right) \hat{\mathrm{j}} \;\mathrm{V} / \mathrm{m}\right)$

Similar Questions

If an electromagnetic wave propagating through vacuum is described by $E_y=E_0 \sin (k x-\omega t)$; $B_z=B_0 \sin (k x-\omega t)$, then

The electric field part of an electromagnetic wave in a medium is represented by

$E_x=0, E_y=2.5 \frac{N}{C}\, cos\,\left[ {\left( {2\pi \;\times\;{{10}^6}\;\frac{{rad}}{s}\;\;} \right)t - \left( {\pi \;\times\;{{10}^{ - 2}}\;\frac{{rad}}{m}} \right)x} \right]$,and  $ E_z=0$ . The wave is

  • [AIPMT 2009]

For a plane electromagnetic wave propagating in $x$-direction, which one of the following combination gives the correct possible directions for electric field $(E)$ and magnetic field $(B)$ respectively?

  • [NEET 2021]

If $\overrightarrow E $ and $\overrightarrow B $ are the electric and magnetic field vectors of E.M. waves then the direction of propagation of E.M. wave is along the direction of

  • [AIPMT 1992]

A point source of $e. m.$ radiation has an average power output of $800\,W$ . The maximum value of electric field at a distance $4.0\,m$ from the source is...$V/m$