- Home
- Standard 12
- Mathematics
यदि आव्यूह $A =\left(\begin{array}{cc}0 & 2 \\ K & -1\end{array}\right)$, समीकरण $A \left( A ^{3}+3 I \right)=2 I$ को संतुष्ट करता है, तो $K$ का मान है
$\frac{1}{2}$
$-\frac{1}{2}$
$-1$
$1$
Solution
Given matrix $A=\left[\begin{array}{cc}0 & 2 \\ k & -1\end{array}\right]$
$A^{4}+3 I A=2 I$
$\Rightarrow A^{4}=2 I-3 A$
Also characteristic equation of $\mathrm{A}$ is
$|\mathrm{A}-\lambda \mathrm{I}|=0$
$\Rightarrow\left|\begin{array}{cc}0-\lambda & 2 \\ \mathrm{k} & -1-\lambda\end{array}\right|=0$
$\Rightarrow \lambda+\lambda^{2}-2 \mathrm{k}=0$
$\Rightarrow \mathrm{A}+\mathrm{A}^{2}=2 \mathrm{~K} \cdot \mathrm{I}$
$\Rightarrow \mathrm{A}^{2}=2 \mathrm{KI}-\mathrm{A}$
$\Rightarrow \mathrm{A}^{4}=4 \mathrm{~K}^{2} \mathrm{I}+\mathrm{A}^{2}-4 \mathrm{AK}$
$\text { Put } \mathrm{A}^{2}=2 \mathrm{KI}-\mathrm{A}$
$\text { and } \mathrm{A}^{4}=2 \mathrm{I}-3 \mathrm{~A}$
$2 \mathrm{I}-3 \mathrm{~A}=4 \mathrm{~K}^{2} \mathrm{I}+2 \mathrm{KI}-\mathrm{A}-4 \mathrm{AK}$
$\Rightarrow \mathrm{I}\left(2-2 \mathrm{~K}-4 \mathrm{~K}^{2}\right)=\mathrm{A}(2-4 \mathrm{~K})$
$\Rightarrow-2 \mathrm{I}\left(2 \mathrm{~K}^{2}+\mathrm{K}-1\right)=2 \mathrm{~A}(1-2 \mathrm{~K})$
$\Rightarrow-2 \mathrm{I}(2 \mathrm{~K}-1)(\mathrm{K}+1)=2 \mathrm{~A}(1-2 \mathrm{~K})$
$\Rightarrow(2 \mathrm{~K}-1)(2 \mathrm{~A})-2 \mathrm{I}(2 \mathrm{~K}-1)(\mathrm{K}+1)=0$
$\Rightarrow(2 \mathrm{~K}-1)[2 \mathrm{~A}-2 \mathrm{I}(\mathrm{K}+1)]=0$
$\Rightarrow \mathrm{K}=\frac{1}{2}$