- Home
- Standard 11
- Mathematics
7.Binomial Theorem
hard
If the maximum value of the term independent of $t$ in the expansion of $\left( t ^{2} x ^{\frac{1}{5}}+\frac{(1- x )^{\frac{1}{10}}}{ t }\right)^{15}, x \geq 0$, is $K$, then $8\,K$ is equal to $....$
A
$6006$
B
$6005$
C
$6007$
D
$6008$
(JEE MAIN-2022)
Solution
$\left( t ^{2} x ^{\frac{1}{5}}+\frac{(1- x )^{\frac{1}{10}}}{ t }\right)^{15}$
$T_{r+1}={ }^{15} C_{r}\left(t^{2} x^{\frac{1}{5}}\right)^{15-r} \cdot \frac{(1-x)^{\frac{r}{10}}}{t^{r}}$
For independent of $t$,
$30-2 r-r=0$
$r =10$
So, Maximum value of ${ }^{15} C _{10} x (1- x )$ will be at
$x=\frac{1}{2}$
i.e. $6006$
Standard 11
Mathematics
Similar Questions
hard