7.Binomial Theorem
hard

यदि $\left(t^2 x^{\frac{1}{5}}+\frac{(1-x)^{\frac{1}{10}}}{t}\right)^{15}, x \geq 0$, के प्रसार में $t$, से स्वतंत्र पद का अधिकतम मान $K$ है, तो $8 K$ बराबर है $...........$

A

$6006$

B

$6005$

C

$6007$

D

$6008$

(JEE MAIN-2022)

Solution

$\left( t ^{2} x ^{\frac{1}{5}}+\frac{(1- x )^{\frac{1}{10}}}{ t }\right)^{15}$

$T_{r+1}={ }^{15} C_{r}\left(t^{2} x^{\frac{1}{5}}\right)^{15-r} \cdot \frac{(1-x)^{\frac{r}{10}}}{t^{r}}$

For independent of $t$,

$30-2 r-r=0$

$r =10$

So, Maximum value of ${ }^{15} C _{10} x (1- x )$ will be at

$x=\frac{1}{2}$

i.e. $6006$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.