જો આપેલ આવૃતિ વિતરણનો મધ્યક અને વિચરણ અનુક્રમે $9$ અને$15.08$ છે તો $\alpha^2+\beta^2-\alpha \beta$ ની કિમંત મેળવો.
$x_i$ | $2$ | $4$ | $6$ | $8$ | $10$ | $12$ | $14$ | $16$ |
$f_i$ | $4$ | $4$ | $\alpha$ | $15$ | $8$ | $\beta$ | $4$ | $5$ |
$24$
$23$
$25$
$22$
$30$ વસ્તુઓને અવલોકવામાં આવે છે જેમાંથી $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} - d$, $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} $ અને બાકી રહેલ $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} + d$ છે જો આપેલ માહિતીનો વિચરણ $\frac {4}{3}$ હોય તો $\left| d \right|$ =
એક વર્ગમાં $60$ વિધ્યાર્થીઓ છે એક પરીક્ષામાં તેમણે મેળવેલ ગુણનું માહિતી વિતરણ આપેલ છે :
$\begin{array}{|l|l|l|l|l|l|l|} \hline \text { Marks } & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline \text { Frequency } & x-2 & x & x^{2} & (x+1)^{2} & 2 x & x+1 \\ \hline \end{array}$
જ્યાં $x$ એ ધન પૂર્ણાક સંખ્યા છે તો આ માહિતી માટે પ્રમાણિત વિચલન અને મધ્યક મેળવો
$15$ અવલોકનોના મધ્યક અને પ્રમાણિત વિચલન અનુક્મે $12$ અને $3$ ભણવામાં આવ્યા છે. ફેરચકાસણી કરતા એવું માલુમ થાય છે કે એક અવલોકન $12$ ની જગ્યાએ $10$ વાંચવામાં આવ્યું હતું. જો સાચાં અવલોક્નોના મધ્યક અને વિચરણ અનુક્રમે $\mu$ અને $\sigma^2$ વડે દર્શાવાય, તો $15\left(\mu+\mu^2+\sigma^2\right)=$.........................
આપેલ પ્રત્યેક માહિતી માટે મધ્યક અને વિચરણ શોધો :
${x_i}$ | $6$ | $10$ | $14$ | $18$ | $24$ | $28$ | $30$ |
${f_i}$ | $2$ | $4$ | $7$ | $12$ | $8$ | $4$ | $3$ |
જો $\sum\limits_{i = 1}^{18} {({x_i} - 8) = 9} $ અને $\sum\limits_{i = 1}^{18} {({x_i} - 8)^2 = 45} $ હોય તો $x_1, x_2, ...... x_{18}$ નું પ્રમાણિત વિચલન મેળવો