13.Statistics
hard

જો આપેલ આવૃતિ વિતરણનો મધ્યક અને વિચરણ અનુક્રમે $9$ અને$15.08$ છે તો $\alpha^2+\beta^2-\alpha \beta$ ની કિમંત મેળવો.

$x_i$ $2$ $4$ $6$ $8$ $10$ $12$ $14$ $16$
$f_i$ $4$ $4$ $\alpha$ $15$ $8$ $\beta$ $4$ $5$

A

$24$

B

$23$

C

$25$

D

$22$

(JEE MAIN-2023)

Solution

$N=\sum f_i=40+\alpha+\beta$

$\sum f_i x_i=360+6 \alpha+12 \beta$

$\sum f _{ i } x _{ i }^2=3904+36 \alpha+144 \beta$

$\operatorname{Mean}(\overline{ x })=\frac{\sum f _{ i } x _{ i }}{\sum f _{ i }}=9$

$\Rightarrow 360+6 \alpha+12 \beta=9(40+\alpha+\beta)$

$3 \alpha=3 \beta \Rightarrow \alpha=\beta$

$\sigma^2=\frac{\sum f _{ i } x _1^2}{\sum f _{ i }}-\left(\frac{\sum f _{ i } x _{ i }}{\sum f _{ i }}\right)^2$

$\Rightarrow \frac{3904+36 \alpha+144 \beta}{40+\alpha+\beta}-(\overline{ x })^2=15.08$

$\Rightarrow \frac{3904+180 \alpha}{40+2 \alpha}-(9)^2=15.08$

$\Rightarrow \alpha=5$

Now, $\alpha^2+\beta^2-\alpha \beta=\alpha^2=25$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.