If the middle term in the expansion of ${\left( {{x^2} + \frac{1}{x}} \right)^n}$ is $924{x^6}$, then $n = $
$10$
$12$
$14$
None of these
If the fourth term in the binomial expansion of $\left(\sqrt{\frac{1}{x^{1+\log _{10} x}}}+x^{\frac{1}{12}}\right)^{6}$ is equal to $200$, and $x > 1$, then the value of $x$ is
If $p$ and $q$ be positive, then the coefficients of ${x^p}$ and ${x^q}$ in the expansion of ${(1 + x)^{p + q}}$will be
Given that the term of the expansion $(x^{1/3} - x^{-1/2})^{15}$ which does not contain $x$ is $5\, m$ where $m \in N$, then $m =$
Let ${\left( {x + 10} \right)^{50}} + {\left( {x - 10} \right)^{50}} = {a_0} + {a_1}x + {a_2}{x^2} + .... + {a_{50}}{x^{50}}$ , for $x \in R$; then $\frac{{{a_2}}}{{{a_0}}}$ is equal to
The coefficient of $\frac{1}{x}$ in the expansion of ${\left( {1 + x} \right)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ is :-