If the minimum value of $f(x)=\frac{5 x^{2}}{2}+\frac{\alpha}{x^{5}}, x>0$, is 14 , then the value of $\alpha$ is equal to.
$32$
$64$
$128$
$256$
The number of triples $(x, y, z)$ of real numbers satisfying the equation $x^4+y^4+z^4+1=4 x y z$ is
Let $3, a, b, c$ be in $A.P.$ and $3, a-1, b+1, c+9$ be in $G.P.$ Then, the arithmetic mean of $a, b$ and $c$ is :
If $a,\;b,\;c$ be in $A.P.$ and $b,\;c,\;d$ be in $H.P.$, then
Let $a , b , c$ and $d$ be positive real numbers such that $a+b+c+d=11$. If the maximum value of $a^5 b^3 c^2 d$ is $3750 \beta$, then the value of $\beta$ is
The reciprocal of the mean of the reciprocals of $n$ observations is their