બંધ સપાટીમાંથી બહાર આવતી વિદ્યુત બળરેખાઓની સંખ્યા $1000$ છે. તો સપાટી વડે ઘેરાતો વિદ્યુતભાર ............. $C$ છે.
$8.854 \times 10^{-9}$
$8.854 \times 10^{-4}$
$8.854 \times 10^{-1}$
$8.854$
સાચું વિધાન પસંદ કરો.
$(1)$ બળની વિદ્યુત રેખા ઘનતા આપેલ બિંદુ આગળ વિદ્યુત તીવ્રતા સદિશ $E$ ના મૂલ્યથી સ્વતંત્ર હોય છે.
$(2)$ બળની વિદ્યુત રેખા ઘનતા આપેલ બિંદુ આગળ તેના વિદ્યુત તીવ્રતા સદિશ $E$ ના સમપ્રમાણમાં હોય છે.
$(3)$ વાસ્તવમાં વિદ્યુતક્ષેત્ર રેખાઓ મળતી નથી. તે માત્ર વિદ્યુત ક્ષેત્રની આલેખીય રજૂઆત જ છે.
$(4)$ વાસ્તવમાં વિદ્યુત ક્ષેત્ર રેખાઓ મળે છે.
વિદ્યુતક્ષેત્રમાં બે ગાઉસિયન ઘન આકૃતિમાં દર્શાવેલ છે. તીર અને મૂલ્ય એ વિદ્યુતક્ષેત્રની દિશા અને મૂલ્ય ($N-m^2/C$) દર્શાવે છે. તો ઘનમા રહેલો કુલ વિદ્યુતભાર કેટલો હશે?
ખોટું વિધાન પસંદ કરો
$(a)$ ગાઉસિયન પૃષ્ઠમાં અંદર દાખલ થતી પૃષ્ઠ રેખા ઋણ ફ્લક્સ દર્શાવે છે.
$(b)$ $q$ વિદ્યુતભારને સમઘનના કેન્દ્ર પર મૂકવામાં આવે છે. બધા પૃષ્ઠમાંથી પસાર થતું ફ્લક્સ સમાન હશે.
$(c)$ સમાન વિદ્યુતક્ષેત્રમાં રહેલ શૂન્ય પરિણામી વિદ્યુતભાર ધરાવતા બંધ ગાઉસિયન પૃષ્ઠ સાથે સંકળાયેલ ફ્લક્સ શૂન્ય હોય.
$(d)$ જ્યારે વિદ્યુતક્ષેત્ર ગાઉસિયન પૃષ્ઠને સમાંતર હોય ત્યારે ફ્લક્સ અશૂન્ય હોય.
આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો.
એક ચોકકસ વિસ્તારમાં વિદ્યુતક્ષેત્ર $ E=Ar$ છે અને તે ત્રિજયાવર્તી દિશામાં બહાર તરફ છે. $a$ ત્રિજયાના ગોળાના કેન્દ્ર પર રહેલા વિદ્યુતક્ષેત્રથી ગોળા પર કેટલો વિદ્યુતભાર મળે?
એક સમઘન કદ $x=0, x= a , y=0, y= a$ અને $z=0, z= a$ સપાટીઓ દ્વારા ઘેરાયેલ છે. આ વિસ્તારમાં વિદ્યુતક્ષેત્ર $\overrightarrow{ E }={E_{ox}} \hat{i},$ જ્યાં $E _0=4 \times 10^4\,NC ^{-1}\,m ^{-1}$, વડે આપવામાં આવે છે. જો $a=2\,cm$ હોય તો સમઘન કદમાં સંકળાયેલ વિદ્યુતભાર $Q \times 10^{-14}\,C$ છે. $Q$ નું મૂલ્ય $........$ થશે.( $\varepsilon_0= 9 \times 10^{-12}\,C ^2 / Nm ^2$ લો.)