If the point of intersections of the ellipse $\frac{ x ^{2}}{16}+\frac{ y ^{2}}{ b ^{2}}=1$ and the circle $x ^{2}+ y ^{2}=4 b , b > 4$ lie on the curve $y^{2}=3 x^{2},$ then $b$ is equal to:

  • [JEE MAIN 2021]
  • A

    $12$

  • B

    $5$

  • C

    $6$

  • D

    $10$

Similar Questions

If the tangent to the parabola $y^2 = x$ at a point $\left( {\alpha ,\beta } \right)\,,\,\left( {\beta  > 0} \right)$ is also a tangent to the ellipse, $x^2 + 2y^2 = 1$, then $a$ is equal to

  • [JEE MAIN 2019]

The smallest possible positive slope of a line whose $y$-intercept is $5$ and which has a common point with the ellipse $9 x^2+16 y^2=144$ is

  • [KVPY 2011]

Find the equation for the ellipse that satisfies the given conditions: Vertices $(0,\,\pm 13),$ foci $(0,\,±5)$.

The locus of point of intersection of two perpendicular tangent of the ellipse  $\frac{{{x^2}}}{{{9}}} + \frac{{{y^2}}}{{{4}}} = 1$ is :-

An ellipse having foci at $(3, 1)$ and $(1, 1) $ passes through the point $(1, 3),$ then its eccentricity is