10-2. Parabola, Ellipse, Hyperbola
hard

A ray of light through $(2,1)$ is reflected at a point $P$ on the $y$ - axis and then passes through the point $(5,3)$. If this reflected ray is the directrix of an ellipse with eccentrieity $\frac{1}{3}$ and the distance of the nearer focus from this directrix is $\frac{8}{\sqrt{53}}$, then the equation of the other directrix can be :

A

$2 x-7 y-39=0$ or $2 x-7 y-7=0$

B

$11 x+7 y+8=0$ or $11 x+7 y-15=0$

C

$2 x-7 y+29=0$ or $2 x-7 y-7=0$

D

$11 x-7 y-8=0$ or $11 x+7 y+15=0$

(JEE MAIN-2021)

Solution

Equation of reflected Ray

$y-1=\frac{2}{7}(x+2)$

$7 y-7=2 x+4$

$2 x-7 y+11=0$

Let the equation of other directrix is

$2 x-7 y+\lambda$

Distance of directrix from Focub

$\frac{a}{e}-a e=\frac{8}{\sqrt{53}}$

$3 a-\frac{a}{3}=\frac{8}{\sqrt{53}} \text { or } a=\frac{3}{\sqrt{53}}$

Distance between two directric $=\frac{2 \mathrm{a}}{\mathrm{e}}$

$=2 \times 3 \times \frac{3}{\sqrt{53}}=\frac{18}{\sqrt{53}}$

$\left|\frac{\lambda-11}{\sqrt{53}}\right|=\frac{18}{\sqrt{53}}$

$\lambda-11=18 \text { or }-18$

$\lambda=29 \text { or }-7$

$2 x-7 y-7=0 \text { or } 2 x-7 y+29=0$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.