The equation of tangent and normal at point $(3, -2)$ of ellipse $4{x^2} + 9{y^2} = 36$ are

  • A

    $\frac{x}{3} - \frac{y}{2} = 1,\;\frac{x}{2} + \frac{y}{3} = \frac{5}{6}$

  • B

    $\frac{x}{3} + \frac{y}{2} = 1,\;\frac{x}{2} - \frac{y}{3} = \frac{5}{6}$

  • C

    $\frac{x}{2} + \frac{y}{3} = 1,\;\frac{x}{3} - \frac{y}{2} = \frac{5}{6}$

  • D

    None of these

Similar Questions

Tangent is drawn to ellipse $\frac{{{x^2}}}{{27}} + {y^2} = 1\,at\,(3\sqrt 3 \cos \theta ,\sin \theta )$  where $\theta \in (0, \pi /2)$ . Then the value of $\theta$ such that sum of intercepts on axes made by this tangent is minimum, is

$P$ is a variable point on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ with $AA'$ as the major axis. Then the maximum value of the area of $\Delta APA'$ is

The product of the lengths of perpendiculars from the foci on any tangent to the ellipse $3x^2 + 5y^2 = 1$, is

If $x^{2}+9 y^{2}-4 x+3=0, x, y \in R$, then $x$ and $y$ respectively lie in the intervals:

  • [JEE MAIN 2021]

If the distance between a focus and corresponding directrix of an ellipse be $8$ and the eccentricity be $1/2$, then length of the minor axis is