Gujarati
10-2. Parabola, Ellipse, Hyperbola
medium

The equation of tangent and normal at point $(3, -2)$ of ellipse $4{x^2} + 9{y^2} = 36$ are

A

$\frac{x}{3} - \frac{y}{2} = 1,\;\frac{x}{2} + \frac{y}{3} = \frac{5}{6}$

B

$\frac{x}{3} + \frac{y}{2} = 1,\;\frac{x}{2} - \frac{y}{3} = \frac{5}{6}$

C

$\frac{x}{2} + \frac{y}{3} = 1,\;\frac{x}{3} - \frac{y}{2} = \frac{5}{6}$

D

None of these

Solution

(a) Given, equation of ellipse is $4{x^2} + 9{y^2} = 36$

Tangent at point $(3,-2)$ is $\frac{{(3)x}}{9} + \frac{{( – 2)y}}{4} = 1$ or $\frac{x}{3} – \frac{y}{2} = 1$

$\therefore $Normal is $\frac{x}{2} + \frac{y}{3} = k$ and it passes through point $(3,-2)$

$\therefore $$\frac{3}{2} – \frac{2}{3} = k $

$\Rightarrow k = \frac{5}{6}$

$\therefore $Normal is, $\frac{x}{2} + \frac{y}{3} = \frac{5}{6}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.