14.Probability
hard

If the probability that a randomly chosen $6$-digit number formed by using digits $1$ and $8$ only is a multiple of $21$ is $p$, then $96\;p$ is equal to

A

$30$

B

$33$

C

$40$

D

$43$

(JEE MAIN-2022)

Solution

$2 \;\times\; 2 \;\times \;2 \;\times \;2\; \times \;2 \;\times \;2\;=\;64$

Divisible by $21$ when divided by $3$ .

Case – $I$ : All $1 \rightarrow$         $(1)$

Case – $II$ : All $8 \rightarrow$        $(1)$

Case – $III$ : $3$ ones and $3$ eights

$\frac{6 !}{3 ! \times 3 !}=20$

Required probability $\therefore p =\frac{22}{64}$

$96 p =96 \times \frac{22}{64}=33$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.