Gujarati
8. Sequences and Series
hard

If the roots of the cubic equation $a{x^3} + b{x^2} + cx + d = 0$ are in $G.P.$, then

A

${c^3}a = {b^3}d$

B

$c{a^3} = b{d^3}$

C

${a^3}b = {c^3}d$

D

$a{b^3} = c{d^3}$

Solution

(a) Let $\frac{A}{R},\;A,\;AR$ be the roots of the equation

$a{x^3} + b{x^2} + cx + d = 0$

then ${A^3} = $Product of the roots $ = – \frac{d}{a}$

$ \Rightarrow $$A = – {\left( {\frac{d}{a}} \right)^{1/3}}$

Since $A$ is a root of the equation.

$\therefore a{A^3} + b{A^2} + cA + d = 0$

$ \Rightarrow $$a\left( { – \frac{d}{a}} \right) + b{\left( { – \frac{d}{a}} \right)^{2/3}} + c{\left( { – \frac{d}{a}} \right)^{1/3}} + d = 0$

==> $b{\left( {\frac{d}{a}} \right)^{2/3}} = c{\left( {\frac{d}{a}} \right)^{1/3}}$             

==> ${b^3}\frac{{{d^2}}}{{{a^2}}} = {c^3}\frac{d}{a}$

==> ${b^3}d = {c^3}a$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.