- Home
- Standard 11
- Mathematics
8. Sequences and Series
medium
The sum of $100$ terms of the series $.9 + .09 + .009.........$ will be
A
$1 - {\left( {\frac{1}{{10}}} \right)^{100}}$
B
$1 + {\left( {\frac{1}{{10}}} \right)^{100}}$
C
$1 - {\left( {\frac{1}{{10}}} \right)^{106}}$
D
$1 + {\left( {\frac{1}{{10}}} \right)^{106}}$
Solution
(a) Series is a $G.P.$ with $a = 0.9 = \frac{9}{{10}}$ and $r = \frac{1}{{10}} = 0.1$
$\therefore $${S_{100}} = a\left( {\frac{{1 – {r^{100}}}}{{1 – r}}} \right) = \frac{9}{{10}}\left( {\frac{{1 – \frac{1}{{{{10}^{100}}}}}}{{1 – \frac{1}{{10}}}}} \right) = 1 – \frac{1}{{{{10}^{100}}}}$.
Standard 11
Mathematics