यदि त्रिघातीय समीकरण $a{x^3} + b{x^2} + cx + d = 0$ के मूल गुणोत्तर श्रेणी में हैं, तब
${c^3}a = {b^3}d$
$c{a^3} = b{d^3}$
${a^3}b = {c^3}d$
$a{b^3} = c{d^3}$
यदि किसी गुणोत्तर श्रेणी के $n$ पदों का योग $S$ एवं गुणनफल $P$ है तथा उनके व्युत्क्रमों का योग $R$ है, तो ${P^2}$ का मान है
उस अनन्त गुणोत्तर श्रेणी का, जिसका सार्वअनुपात $r$ हो, योग ज्ञात किया जा सकता है
माना $a _{1}, a _{2}, \ldots \ldots, a _{10}$ एक गुणोत्तर श्रेढ़ी है। यदि $\frac{ a _{3}}{ a _{1}}=25$, तो $\frac{ a _{9}}{ a _{5}}$ बराबर है
एक अनुक्रम $ < {a_n} > \;$ के लिये ${a_1} = 2$ तथा $\frac{{{a_{n + 1}}}}{{{a_n}}} = \frac{1}{3}$, तब $\sum\limits_{r = 1}^{20} {{a_r}} $ है
$4$ और $\frac{1}{4}$ के बीच तीन गुणोत्तर माध्यों का गुणनफल होगा