Gujarati
8. Sequences and Series
medium

If the sum of $n$ terms of a $G.P.$ is $255$ and ${n^{th}}$ terms is $128$ and common ratio is $2$, then first term will be

A

$1$

B

$3$

C

$7$

D

None of these

Solution

(a) Given that $\frac{{a({r^n} – 1)}}{{r – 1}} = 255$ $(\because \;\;r > 1)$ …..$(i)$

$a{r^{n – 1}} = 128$ …..$(ii)$

and common ratio $r = 2$ …..$(iii)$

From $(iii), (i)$ and $(ii)$

we get $a{2^{n – 1}} = 128$  …..$(iv)$

and $\frac{{a({2^n} – 1)}}{{2 – 1}} = 255$ …..$(v)$

Dividing $(v)$ by $(iv)$

we get $\frac{{{2^n} – 1}}{{{2^{n – 1}}}} = \frac{{255}}{{128}}$

$ \Rightarrow $$2 – {2^{ – n + 1}} = \frac{{255}}{{128}}$

$ \Rightarrow $${2^{ – n}} = {2^{ – 8}}$

$ \Rightarrow $$n = 8$

Putting $n = 8$ in equation $(iv),$

we have $a\;.\;{2^7} = 128 = {2^7}$or $a = 1$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.