- Home
- Standard 11
- Mathematics
8. Sequences and Series
easy
If the sum of first $n$ terms of an $A.P.$ be equal to the sum of its first $m$ terms, $(m \ne n)$, then the sum of its first $(m + n)$ terms will be
A
$0$
B
$n$
C
$m$
D
$m + n$
Solution
(a) As given $\frac{n}{2}\left\{ {2a + (n – 1)d} \right\} = \frac{m}{2}\left\{ {a + (m – 1)d} \right\}$
$ \Rightarrow $$2a(m – n) + d({m^2} – m – {n^2} + n) = 0$
$ \Rightarrow $ $(m – n)\left\{ {2a + d(m + n – 1)} \right\} = 0$
$ \Rightarrow $ $2a + (m + n – 1)d = 0$,$(\because \;m \ne n)$
$\therefore $ ${S_{m + n}} = \frac{{m + n}}{2}\left\{ {2a + (m + n – 1)d} \right\} $
$= \frac{{m + n}}{2}\left\{ 0 \right\} = 0$.
Standard 11
Mathematics