Gujarati
8. Sequences and Series
medium

If ${a_1},\;{a_2},\,{a_3},......{a_{24}}$ are in arithmetic progression and ${a_1} + {a_5} + {a_{10}} + {a_{15}} + {a_{20}} + {a_{24}} = 225$, then ${a_1} + {a_2} + {a_3} + ........ + {a_{23}} + {a_{24}} = $

A

$909$

B

$75$

C

$750$

D

$900$

Solution

(d) ${a_1} + {a_5} + {a_{10}} + {a_{15}} + {a_{20}} + {a_{24}} = 225$

$ \Rightarrow $ $({a_1} + {a_{24}}) + ({a_5} + {a_{20}}) + ({a_{10}} + {a_{15}}) = 225$

$ \Rightarrow $ $3({a_1} + {a_{24}}) = 225$

$ \Rightarrow $${a_1} + {a_{24}} = 75$

( In an $A.P.$ the sum of the terms equidistant from the beginning and the end is same and is equal to the sum of first and last term)

${a_1} + {a_2} + …… + {a_{24}} = \frac{{24}}{2}({a_1} + {a_{24}}) = 12 \times 75 = 900$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.