If ${a_1},\;{a_2},\,{a_3},......{a_{24}}$ are in arithmetic progression and ${a_1} + {a_5} + {a_{10}} + {a_{15}} + {a_{20}} + {a_{24}} = 225$, then ${a_1} + {a_2} + {a_3} + ........ + {a_{23}} + {a_{24}} = $
$909$
$75$
$750$
$900$
The ratio of sum of $m$ and $n$ terms of an $A.P.$ is ${m^2}:{n^2}$, then the ratio of ${m^{th}}$ and ${n^{th}}$ term will be
Let $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots$ be an $A.P.$ If $\frac{a_{1}+a_{2}+\ldots+a_{10}}{a_{1}+a_{2}+\ldots+a_{p}}=\frac{100}{p^{2}}, p \neq 10$, then $\frac{a_{11}}{a_{10}}$ is equal to :
If $a,\;b,\;c$ are in $A.P.$, then $\frac{1}{{bc}},\;\frac{1}{{ca}},\;\frac{1}{{ab}}$ will be in
If the sum of three numbers in $A.P.,$ is $24$ and their product is $440,$ find the numbers.
If $x,y,z$ are in $A.P. $ and ${\tan ^{ - 1}}x,{\tan ^{ - 1}}y$ and ${\tan ^{ - 1}}z$ are also in $A.P.$, then